Please use this identifier to cite or link to this item: http://repositorio.aee.edu.br/jspui/handle/aee/18380
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPeixoto, Josana de Castro-
dc.contributor.authorCosta, Wesley-
dc.date.accessioned2021-09-24T18:14:25Z-
dc.date.available2021-09-24T18:14:25Z-
dc.date.issued2021-06-08-
dc.identifier.urihttp://repositorio.aee.edu.br/jspui/handle/aee/18380-
dc.description.abstractAs abelhas constituem um dos principais grupos de animais associados à polinização de diversas plantas nativas e cultivadas, à regeneração de ecossistemas fragmentados e à apicultura, com destaque para Apis mellifera L., espécie exótica introduzida no Brasil no século XIX. Entretanto, a intensificação do uso de agrotóxicos na agricultura tem contribuído para o extermínio das populações de abelhas e, consequentemente, ameaçado a estabilidade da biodiversidade e os serviços ecossistêmicos. O presente trabalho objetiva a construção e validação de modelos de inteligência artificial (IA) capazes de predizer a ecotoxicidade de compostos tóxicos em Apis mellifera. Inicialmente, os maiores conjuntos de dados públicos de produtos químicos com dados experimentais de toxicidade aguda oral e por contato para A. mellifera foram integrados e preparados. Em seguida, modelos de classificação robustos e preditivos (taxa de acerto ~91-92%) foram desenvolvidos para ambos os endpoints (toxicidade oral e por contato) acordo com as melhores práticas de modelagem preditiva e seguindo recomendações da OECD. Em seguida, os modelos mais preditivos foram implementados no aplicativo BeeToxAI, o qual está disponível gratuitamente em http://beetoxai.labmol.com.br/. Após a implementação, um conjunto externo de agrotóxicos com dados de toxicidade aguda oral (9 compostos) e por contato (14 compostos) para A. mellifera foi utilizado para avaliação adicional da preditividade dos modelos. O BeeToxAI foi capaz de prever a toxicidade aguda por contato de 12 dos 14 agrotóxicos e a toxicidade aguda oral de 7 dos 9 agrotóxicos. Além da predição de toxicidade, o BeeToxAI também disponibiliza a confiança (probabilidade) da predição, o domínio de aplicabilidade, e gera mapas codificados por cores das contribuições de fragmentos relativos à toxicidade. Esta valiosa contribuição pode ser utilizada como método alternativo ao uso de animais para otimização dos fluxos de registro e reavaliação de agrotóxicos no IBAMA e demais agências governamentais, de modo a estimar de forma rápida e confiável o risco inaceitável desses produtos para as abelhaspt_BR
dc.subjectPolinizadores; Apis melífera; aprendizado de máquina; ecotoxicologia, modelagem preditiva; método alternativo.pt_BR
dc.titleMODELOS DE APRENDIZADO DE MÁQUINA PARA AVALIAÇÃO PREDITIVA DE ECOTOXICIDADE DE AGROTÓXICOS EM Apis mellíferapt_BR
Appears in Collections:Dissertações

Files in This Item:
File Description SizeFormat 
Dissertação Wesley Costa.pdf3.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.